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Heavy Metals Toxicity 

heavy metals are defined as that group of elements 
that have specific weights higher than about 5g/cm3.	
a number of them (co, Fe, Mn, Mo, ni, zn, cu) are	
essential	 micronutrients	 and	 are	 required	 for	 normal	
growth and take part in redox reactions, electron trans-
fers	and	other	important	metabolic	processes	in	plants.	
Metals which are considered nonessential (pb, cd, cr, 

Hg	etc.)	are	potentially	highly	 toxic	 for	plants	 [1-	3].	
large	areas	of	land	are	contaminated	with	heavy	metals	
(the	 main	 group	 of	 inorganic	 contaminants)	 resulting	
from urban activities, agricultural practices and indus-
try [4, 5]. Excessive concentrations of trace elements 
(cd, co, cr, hg, Mn, ni, pb and zn) are toxic and lead 
to growth inhibition, decrease in biomass and death of 
the	plant	 [6].	Heavy	metals	 inhibit	physiological	pro-
cesses such as respiration, photosynthesis, cell elonga-
tion, plant-water relationship, n-metabolism and min-
eral	nutrition	[7].		
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Abstract 

as a consequence of industrial development, the environment is increasingly polluted with heavy met-
als.	Plants	possess	homeostatic	mechanisms	 that	allow	 them	 to	keep	correct	concentrations	of	essential	
metal	 ions	 in	cellular	compartments	and	 to	minimize	 the	damaging	effects	of	an	excess	of	nonessential	
ones. one of their adverse effects on plants is the generation of harmful active oxygen species, leading to 
oxidative	stress.	Besides	the	well-studied	antioxidant	systems	consisting	of	low-molecular	antioxidants	and	
specific enzymes, recent works have begun to highlight the potential role of flavonoids, phenylopropanoids 
and	phenolic	acids	as	effective	antioxidants.	During	heavy	metal	 stress	phenolic	compounds	can	act	as	
metal	chelators	and	on	the	other	hand	phenolics	can	directly	scavenge	molecular	species	of	active	oxygen.		

phenolics, especially flavonoids and phenylopropanoids, are oxidized by peroxidase, and act in h2O2-
scavenging, phenolic/asc/poX system. their antioxidant action resides mainly in their chemical struc-
ture.	There	is	some	evidence	of	induction	of	phenolic	metabolism	in	plants	as	a	response	to	multiple	stresses	
(including	heavy	metal	stress).	
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Some	 external	 mechanisms	 that	 limit	 the	 uptake	 of	
metals	by	roots	can	help	plants	tolerate	a	certain	amount	
of	 toxic	 metal	 in	 soil.	 One	 of	 them	 is	 the	 formation	 of	
non-toxic	metal-ligand	chelates	in	rhizosphere	involving	
organic	 acids	 and	 other	 substances	 exuded	 from	 roots.	
Heavy	metals	tolerance	is	enhanced	by	the	action	of	my-
corrhizae [4, 8]. Metals can be transported via an apo-
plastic	 system	 and	 immobilized	 in	 cell	 walls	 [7].	 Some	
plants	(Anthyllis vulnenaria	and	Biscutella leavigata)	can	
transport	the	excess	of	metals	to	aging	organs	and	leaves	
and	remove	them	seasonally	[9].	Toxic	metals	become	a	
real	threat	to	plants	mainly	when	they	reach	the	cytosol	of	
the cell. therefore, the ability of root cells to control the 
transport	of	heavy	metals	via	membranes	determines	their	
tolerance	 by	 plants	 [8].	They	 can	 be	 immediately	 com-
plexed, inactivated and transformed into a physiologically 
tolerable	form	via	action	of	phytochelatins	and	sequestred	
in cell vacuoles [6, 8]. in many cases plants resistant to 
heavy	 metal	 stress	 have	 lower	 nutritional	 requirements	
and specific mineral (cadmium, potassium and phospho-
rus) and water economies to cope with this stress [8, 9]. 

Remarkably	resistant	plants	(and	organisms	that	con-
stitute	the	plant’s	rhizosphere)	are	involved	in	phytoreme-
diation (consisting of phytoextraction, rhizofiltration and 
phytostabilization)	of	metal	polluted	sites	[1].	Such	plants	
are	 uncommon	 and	 according	 to	 khan	 et	 al. [4], about 
400	hyperaccumulator	species	(plants	able	to	accumulate	
huge	amounts	of	heavy	metals	 in	 their	 tissues)	 [8]	have	
been identified. according to the chemical and physical 
properties	 of	 heavy	 metals	 we	 can	 divide	 their	 harmful	
action	into:	
	a)	 generation	of	ROS	(reactive oxygen species)	by	auto-

oxidation and Fenton reaction, 
	b)	 blocking	 of	 essential	 functional	 groups	 in	 biomole-

cules:	proteins	(by	the	inactivation	of	the	SH-groups	in	
enzymes active centers) and polynucleotides [8, 11],  

	c)	 substitution	of	essential	metal	ions	by	other	incorrect	
ones	[3].	

Generation of ROS under Heavy Metal Stress 

Aerobic	organisms	are	exposed	to	ROS	(reactive oxy-
gen species)	formation.	These	incomplete	reduced	oxygen	
species are toxic by-products, generated at low levels in 
non-stressed plant cells in chloroplasts and mitochondria, 
and also by cytoplasmic, membrane-bound or exocellular 
enzymes	 involved	 in	 redox	 reactions	 (especially	 photo-
synthetic	 electron	 transport	 processes	 and	 respiration).	
Extra	 amounts	 of	 ROS	 occur	 under	 stressful	 conditions	
such as pathogen attacks, wounding, herbivore feeding, 
uv light, heavy metals and others [12, 13].  

Several	metabolic	processes	may	use	ROS	in	a	good	
way.	Some	of	the	ROS	are	involved	in	lignin	formation	in	
cell	walls.	They	participate	in	an	oxidative	burst	and	act	
not only as direct protectants against invading pathogens, 
but	also	as	signals	activating	further	reactions	(HR-hyper-
sensitive response or phytoalexin biosynthesis) [13, 14].  

Generally	a	plant’s	cells	try	to	keep	the	concentration	
of	ROS	at	the	possible	low	level	because	they	are	more	
reactive	than	molecular	oxygen	(O2) [13], and they react 
with	almost	every	organic	constituent	of	 the	 living	cell.	
the high reactivity of ros is based on the specificity of 
their electronic configuration. 

ROSs	 are	 known	 to	 damage	 cellular	 membranes	 by	
inducing	 lipid	 peroxidation	 [2].	 They	 also	 can	 damage	
Dna, proteins, lipids and chlorophyll [15]. the most 
popular	 ROS	 are	 .O2

-	 -superoxide radical, h2O2	-hydro-
gen	peroxide, and .OH	-hydroxyl  radical	originating	from	
one, two or three electron transfers to dioxygen (o2).		

Under	physiological	conditions	 .O2
-	 is	not	very	reac-

tive	against	 the	biomolecules	of	 the	cell	and	in	aqueous	
solutions	at	neutral	or	slithly	acidic	pH	disproportionates	
to	H2O2	and	O2.		

H2O2 is relatively stable and not very reactive, electri-
cally neutral ros, but is very dangerous because it can 
pass	 through	cellular	membranes	 and	 reaches	 cell	 com-
partments	far	from	the	site	of	its	formation	[13].		

Dietz	et	al.	[16]	and	Sahw	et	al.	[17]	have	reported	that	
heavy	metals	induce	oxidative	stress	in	cells	and	tissues	in	
the	following	ways:		
	a)	 they	transfer	electrons	directly	in	single-electron	reac-

tions, which generate free radicals. the so-called tran-
sition metals (Fe, cu, Mn, etc.), which have unpaired 
electrons in their orbitals, accept and donate single 
electrons, thus promoting monoelectron transfers to 
O2	and	generally	ROS	interconversion	and	oxireduc-
tion phenomena, 

 b) metals disturb metabolic pathways, especially in the 
thylakoid membrane, which also results in increased 
formation	 of	 free	 radicals	 and	 reactive	 oxygen	 spe-
cies, 

 c) in addition, heavy metals mainly inactivate the anti-
oxidant enzymes (peroxidases, catalases, superoxide 
dismutases) responsible for free radical detoxification, 
although	 peroxidases	 also	 may	 be	 activated	 due	 to	
metal stress, 

 d) finally, heavy metal accumulation results in the deple-
tion of low molecular weight antioxidants, such as 
glutathione, which is consumed under phytochelate 
formation.	
H2O2	in	the	presence	of	.O2

-	can	generate	highly	reac-
tive	.OH	hydroxyl radicals via	the	metal-catalyzed	Haber-
Wiess	reaction	(scheme	1.)	thus	the	scavenging	of	H2O2	
in cells is critical to avoid oxidative damage [14, 19]. in 
the	 presence	 of	 	 redox	 active	 transition	 metals	 such	 as	
Cu+	and	Fe2+, h2O2	can	be	converted	to	.OH	molecule	in	a	
metal-catalyzed reaction via the Fenton reaction [11, 13] 
(scheme	1.).		

Other	 metals	 (e.g.	 Hg2+)	 not	 belonging	 to	 transient	
metals	cannot	replace	cuprum	and	iron	in	Fenton’s	reac-
tion, but such ions can inhibit the activities of antioxida-
tive enzymes, especially glutathione reductase and lead 
consequently	to	accumulation	of	ROS	[11].		

Cadmium	causes	oxidative	stress	probably	through	in-
direct	mechanisms	such	as	interaction	with	the	antioxida-
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tive defence, disruption of the electron transport chain or 
induction	of	lipid	peroxidation.	The	activation	of	lipoxy-
genase, an enzyme that stimulates lipid peroxidation, has 
been	reported	after	cadmium	exposure	[20].	

Scheme	1:
Haber-Wiess	reaction	

H2O2	+	.O2
- → .OH	+	OH-	+	O2	

Fenton	reaction	
H2O2	+	Fe2+(Cu+) → Fe3+(Cu2+)	+	.OH	+	OH-	

O2	+	Fe3+(Cu2+) →  Fe2+(Cu+)	+	O2	

Plant’s Defense Systems 

Plant	damage	occurs	when	the	capacity	of	antioxidant	
processes and detoxification mechanisms are lower than 
the	amount	of	ROS	production.	Aerobic	organisms	have	
developed complex systems protecting them from ros, 
consisting	 of	 several	 enzymes	 and	 antioxidants.	 Those	
mechanisms	 can	 slow	 down	 or	 even	 stop	 the	 oxidation	
of	biomolecules	and	block	the	process	of	oxidative	chain	
reactions	 [21].	 The	 most	 important	 are	 low-molecular	
antioxidants such as ascorbic acid, glutathione, thiols, α-
tocopherol	 and	 protective	 pigments	 such	 as	 carotenoids	
[2, 14, 22]. non-enzymatic scavengers are essential in the 
protection of cellular components from most ros, but 
they	cannot	cope	with	reducing	radicals	such	as	superox-
ide	or	metastable	hydroperoxides	[23].	The	most	impor-
tant	antioxidant	enzymes	are:	superoxide	dismutase	(SOD	

Ec 1.15.1.1), catalase (cat Ec 1.11.1.6), ascorbate per-
oxidase (apX Ec 1.11.1.11), monodehydroascorbate re-
ductase (MDar Ec 1.1.5.4), dehydroacscorbate reduct-
ase	 (DHAR	 EC	 1.8.5.1)	 and	 glutathione	 reductase	 (GR	
EC	1.6.4.2).	At	least	four	of	them	participate	in	a	highly	
developed detoxification system named the ascorbate-
glutathione cycle (halliwell-asada cycle) [15, 24-27]. 

apX uses ascorbic acid as a reductant in the first step 
of	the	ascorbate-glutathione	cycle.	This	is	the	most	impor-
tant	peroxidase	 in	H2O2 detoxification operating both in 
cytosol and chloroplasts [15, 28]. Apx	gene	expression	is	
rapidly	induced	by	various	stress	conditions	[14].		

Phenolic Compounds and Their Functions 

All	plants	produce	an	amazing	diversity	of	secondary	
metabolites.	One	of	the	most	important	groups	of	these	me-
tabolites	are	phenolic	compounds.	Phenolics	are	character-
ized	by	at	least	one	aromatic	ring	(C6)	bearing	one	or	more	
hydroxyl	 groups.	They	 are	 mainly	 synthetized	 from	 cin-
namic acid, which is formed from phenylalanine by the ac-
tion of l-phenyloalanine ammonia-lyase pal (Ec 4.3.1.5), 
the	branch	point	enzyme	between	primary	(shikimate	path-
way)	and	secondary	(phenylopropanoid)	metabolism	[30].	
the significance of this route can be supported by the fact 
that, in normal growth conditions, 20% of carbon fixed by 
plants flows through this pathway [12] (Fig.1.) phenols are 
divided into several different groups, distinguished by the 
number	of	constitutive	carbon	atoms	 in	conjunction	with	
the	 structure	 of	 the	 basic	 phenolic	 skeleton	 (simple	 phe-

Fig. 1. Biosynthesis pathways leading to formation of main groups of phenolic compounds (according to [29], changed). 
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nols, benzoic acids, phenylopropanoids and flavonoids) 
[23, 31-33]. phenolics have various functions in plants. 
An	 enhancement	 of	 phenylopropanoid	 metabolism	 and	
the	amount	of	phenolic	compounds	can	be	observed	under	
different environmental factors and stress conditions [12, 
18, 35, 36]. the synthesis of isoflavones and some other 
flavonoids is induced when plants are infected or injured 
[34, 37], or under low temperatures and low nutrient condi-
tions [18, 37]. Most of them have antimicrobial activity. 
plants accumulate uv-absorbing flavonoids and other phe-
nolic compounds mainly in vacuoles of epidermal cells, to 
prevent	the	penetration	of	UV-B	into	the	deeper	tissues	of	
the	plant	[38].	Flavonoids	secreted	from	roots	of	legumina	
activate	genes	of	root	nodule	bacteria	[39].		

The	induction	of	phenolic	compound	biosynthesis	was	
observed	in	wheat	in	response	to	nickel	toxicity	[12]	and	
in	maize	 in	 response	 to	aluminium	[39].	Phaseolus vul-
garis	exposed	to	Cd2+	acccumulate	soluble	and	insoluble	
phenolics	 and	 Phyllantus tenellus	 leaves	 contain	 more	
phenolics	 than	 control	 plants	 after	 being	 sprayed	 with	
copper	sulphate	[12].		

An	increase	of	phenolics	correlated	to	the	increase	in	
activity	of	enzymes	involved	in	phenolic	compounds	me-
tabolism was reported, suggesting de novo	 synthesis	 of	
phenolics under heavy metal stress. in contrast, some evi-
dence indicates that the increase in flavonoid concentration 
is	mainly	the	result	of	conjugate	hydrolysis	and	not	due	to	
de novo	biosynthesis	[40].	Increase	in	soluble	phenolics	
such as intermediates in lignin biosynthesis can reflect the 
typical	anatomical	change	induced	by	stressors:	increase	
in	cell	wall	endurance	and	the	creation	of	physical	barriers	
preventing	calls	 against	harmful	 action	of	heavy	metals	
[12].	In	recent	years	there	has	been	a	growing	interest	in	
antioxidant	properties	of	phenolic	compounds.		

Antioxidant Action of Phenols 

The	conception	of	antioxidant	action	of	phenolic	com-
pounds	is	not	novel	[41].	There	have	been	many	reports	
of	induced	accumulation	of	phenolic	compounds	and	per-
oxidase	activity	in	plants	treated	with	high	concentrations	
of	metals.		

Antioxidant	action	of	phenolic	compounds	 is	due	 to	
their	high	tendency	to	chelate	metals.	Phenolics	possess	
hydroxyl and carboxyl groups, able to bind particularly 
iron	and	copper	[10].	The	roots	of	many	plants	exposed	
to	heavy	metals	exude	high	levels	of	phenolics	[39].	They	
may	 inactivate	 iron	 ions	 by	 chelating	 and	 additionally	
suppressing the superoxide-driven Fenton reaction, which 
is believed to be the most important source of ros [42, 
43]. tannin-rich plants such as tea, which are tolerant to 
Mn excess, are protected by the direct chelatation of Mn. 
Direct chelation, or binding to polyphenols, was observed 
with	methanol	extracts	of	rhizome	polyphenols	from	Nym-
pheae for cr, pb and hg [44]. according to Morgan et al. 
[45]	this	general	chelating	ability	of	phenolic	compounds	
is	probably	related	 to	 the	high	nucleophilic	character	of	

the aromatic rings rather than to specific chelating groups 
within	the	molecule.		

There	is	another	mechanism	underlying	their	antioxi-
dant	 ability.	 Metal	 ions	 decompose	 lipid	 hydroperoxide	
(lOOH)	by	the	hemolytic	cleavage	of	the	O-O	bond	and	
give lipid alkoxyl radicals, which initiate free radical 
chain	oxidation.	Phenolic	antioxidants	inhibit	lipid	perox-
idation	by	trapping	the	lipid	alkoxyl	radical.	This	activity	
depends on the structure of the molecules, and the number 
and	position	of	the	hydroxyl	group	in	the	molecules	[46].	

 arora et al. [47] show that phenolics (especially fla-
vonoids)	are	able	to	alter	peroxidation	kinetics	by	modi-
fying	the	lipid	packing	order.	They	stabilize	membranes	
by decreasing membrane fluidity (in a concentration-de-
pendent	manner)	and	hinder	the	diffusion	of	free	radicals	
and restrict peroxidative reaction [48, 47]. according to 
verstraeten et al. [49], in addition to known protein-bind-
ing capacity of flavanols and procyanidins, they can in-
teract	 with	 membrane	 phospholipids	 through	 hydrogen	
bonding	 to	 the	 polar	 head	 groups	 of	 phospholipids.	As	
a consequence, these compounds can be accumulated at 
the membranes’ surface, both outside and inside the cells. 
through this kind of interaction, as they suggest, selected 
flavonoids help maintain membranes’ integrity by pre-
venting	the	access	of	deleterious	molecules	to	the	hydro-
phobic region of the bilayer, including those that can af-
fect	membrane	rheology	and	those	that	induce	oxidative	
damage	to	the	membrane	components.		

on the other hand, in vitro studies have shown that fla-
vonoids	can	directly	scavenge	molecular	species	of	active	
oxygen:	·O2

-		-superoxide, h2O2	-hydrogen	peroxide, .OH	
-hydroxyl  radical, 1O2	-singlet oxygen	or	peroxyl radical.	
Their	antioxidant	action	resides	mainly	in	their	ability	to	
donate electrons or hydrogen atoms [4, 14, 42, 50]. poly-
phenols	posess	ideal	structural	chemistry	for	this	acitvity	
and	have	been	shown	 to	be	more	effective	 in vitro	 than	
vitamins	E	and	C	on	molar	basis	[43].		

As	described	by	Bors	et	al.	[41]	there	are	three	struc-
tural	features	that	are	important	determinants	for	the	anti-
oxidant potential of flavonoids:  
	a)	 the	orto 3’,4’-dihydroxy structure in the B ring (e.g. in 

catechin, quercetin); 
 b) the 2,3-double bond in conjunction with the 4-oxo 

group	 in	 the	 C	 ring	 (which	 allows	 conjunction	 be-
tween the a and B ring, or electron delocalization;  

	c)	 the	presence	of	a	3-	OH	group	in	C	ring	and	a	5-OH	
group	in	the	A	ring.		
among them the 3-oh group is the most significant 

determinant	 of	 electron-donating	 activity.	 The	 glycosi-
lated flavonoids lose their activity in comparison with 
aglycones [19, 51]. the hydrogen peroxide-dependent 
oxidation of flavonols has been observed in situ	 in	 epi-
dermal	 strips	of	 leaves	of	Vicia faba [52], Tradescantia	
virginiana	[53]	and	in	mesophyll	cells	of	V. faba [52].	

plants contain two major types of peroxidases, which 
can be divided into two groups: peroxidases (apX) which 
use asc as the preferential electron donor and others, 
which use phenolics. apX is mainly localized in chloro-
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plasts, cytosol and peroxisomes and its function is to scav-
enge	the	H2O2	which	is	formed	in	these	organelles	(Fig.	2)	
[56-59]. in these compartments, ascorbate is oxidized to 
the MDa (monodehydroascorbate) radical by apX to de-
toxify	H2O2. MDa is a radical with a short lifetime that, 
if	 not	 rapidly	 reduced	disproportionates	 to	 ascorbate	 and	
DHA	(dehydroascorbic	acid)	which	is	reduced	to	ascorbate	
by (Gsh)-dependent glutathione reductase (Dhar) [28, 
55].	MDA	radical	can	be	reduced	to	ascorbate	by	non-enzy-
matic	reaction	of	ferrodoxin	(Fd)	or	by	NAD(P)-dependent	
enzymatic	 reaction	 of	 MDAR	 (monodehydroascorbate	
reductase)	[56].	Some	works	indicate	that	high	concentra-
tions of heavy metals can inhibit action of apX [24].  

Peroxidases	 which	 use	 phenolics	 can	 be	 divided	 into	
soluble and cell wall-bound, apoplastic poXs and vacuolar 
ones. cell wall-bound poXs have traditionally been con-
siderated to participate in lignin monomers oxidation, pro-
viding	oxidized	substrates	for	lignin	formations	and	other	
physiological processes [12, 34, 60, 61, 62, 63]. accord-
ing to rai et al. [3], peroxidase which participate in lignin 
biosynthesis	and	might	built	up	a	physical	barrier	against	
poisoning	of	heavy	metals	is	important	in	cadimium	toxic-
ity, wounding and pathogen response. soluble, apoplastic 
poXs can scavenge h2O2, cooperating with phenolics and 
asc [34]. it has been proposed that phytophenolics, es-
pecially flavonols and phenylopropanoids of vacuoles and 
the apoplast, can detoxify h2O2	as	electron	donors	for	phe-

nol	 peroxidases	 (guaiacol	 peroxidases)	 localized	 in	 these	
compartments, which results in the formation of respective 
phenoxyl	radicals [19, 34, 54].   

this first step of antioxidant action is catalyzed by per-
oxidases	(reaction	1).	Phytophenolics	can	be	regenerated	
from	phenoxyl	radicals	by	non–enzymatic	reaction	with	
ascorbate	(reaction	2)	inhibiting	the	formation	of	degrad-
ed products [19, 21, 55]. if monodehydroascorbate radical 
is	formed	in	vacuoles	the	radicals	are	disproportionated	to	
ascorbate	and	DHA	(reaction	3)	which	can	be	transported	
to	 cytoplasm	 and	 is	 reduced	 there	 by	 DHAR	 [34].	The	
transport	of	both	ASC	and	DHA	across	tonoplast	[64]	and	
between	 symplast	 and	apoplast	has	been	observed	 [65].	
According	to	Sakihama	et	al.	[50]	it’s	possible	that	MDA	
reductase	could	act	as	phenoxyl	radical	reductase	 in	 the	
apoplast	to	regenerate	the	redox	status	of	phenols.	

A	scheme	of	four	reactions	is:	

	 2FlavOH	+	H2O2 → 2Flavo·	+2H2O	 (1)

	 2FlavO· + asc → 2Flavoh +2MDa·	 (2)

	 MDA·	+	MDA·	→ asc + Dha (3)

	 H2O2	+ asc → 2h2O	+	DHA	 (4)

where reaction 4 is the sum of 1,2 and 3. 

Fig. 2. similarity between apX action (in chloroplast and cytosol) and poX action (in apoplast and vacuole). according to sakihama et 
al. [50], it’s possible that MDa reductase could act as phenoxyl radical reductase in the apoplast to regenerate redox status of phenols. 
poX uses phenolics as substrates to detoxify h2O2 (drawn according to [55], changed). 
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It’s	proper	to	mention	that	although	the	reduced	forms	
of phenolic compounds act as antioxidants, the oxidized 
ones (phenoxyl radicals) may exert cytotoxic, pro-oxidant 
activity	when	the	lifetime	of	the	radicals	is	prolonged	by	
effectors of spin-stabilization  [55, 67]. this is true also 
for other natural antioxidants like vitamin c, vitamin E 
and	carotenoids	[66].		

Under	normal	physiological	conditions	these	radi-
cals	usually	do	not	show	harmful	action	because	they	
are	 unstable	 and	 are	 rapidly	 changed	 to	 non-radical	
products.	 In	 fact	 sometimes	 they	 act	 in	 a	 good	 way	
as prooxidants, o-dihydroxy	phenolics	show	anti-her-
bivore	 activity	 under	 certain	 condition	 [68].	 But	 in	
general	phenoxyl	radicals	are	toxic	to	living	systems	
because	 of	 their	 ability	 to	 initiate	 free-radical	 chain	
reactions	 in	 the	 membrane	 and	 their	 propensity	 to	
cross-link	with	a	variety	of	molecules	[55].	It	has	also	
been	reported	that	prooxidant	activity	can	be	elicited	
by	 metal	 ions.	 Metal	 ions	 may	 influence	 the	 nature	
of	plant	phenolics	 in vivo by	altering	 the	 lifetime	of	
phenoxyl	radicals.	The	toxicity	of	metals	such	as	Al3+, 
Cd2+	 and	 Zn2+	 retained	 in	 the	 root	 apoplast	 could	 be	
explained	in	this	way	[67].	

if there is a deficit of asc, toxic, brown polymeriza-
tion products of flavonoids, may be generated irreversibly 
[19, 54, 69].  
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